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An examination is made of a method of calculating the temperature
field in the region illustrated in Fig. 1. The temperature Ty of the
shaded heat regions is found, under the assumption that the shaded
regions possess high thermal conductivity, and that the temperature
is the same at all points of these regions. The method is applied to
calculation of the temperature field in a phase shifter rotor. The de-
pendence of T, on the thickness of thermal insulation of the rotor
conductors is given.

A method is described for determining the tempera-
ture of heat sources located in notches in an annular
region and separated from it by a layer of thermally
insulating material. The temperature field in the an-
nular region is constructed by joining solutions of the
heat conduction equation.

Fig. 1. Region in which the temp-
erature field is determined.

The shaded curved rectangles of Fig. 1 are sections
of the material which possess much larger thermal
conductivity in comparison with the material of the re-
maining part of the annulus. These sections are sur-
rounded by a thin layer of thermally insulating materi-
al. In the part of the annulus where a =r =< b, there is
heat generation with a volume density Qy; in the remain-
ing part of the annulus, included between the shaded
rectangles, the density of heat generation is Q, We
shall denote by q the total amount of heat liberated in a
single shaded rectangle in unit time. The heat flux
through the boundary r = ¢ is equal to zero, and the
temperature of the annulus is zero on the inner bound-
aryatr=a, i.e.,
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Because the thermal conductivity of the material of
the shaded sections is considerably greater than that
of the remaining part of the annulus, while the size of
these sections is not large, we may consider the
temperature at all points of these sections to be the
same. We denote it by T,.

Thus, the problem reduces to solution of the
Poisson equation for the region shown in Fig. 2, under
the following boundary conditions:

R - =0, or =0, Tl=a=0; 3)
dcp (}:u._, 0f r=c
ky a7 = —k‘ (To—T)lr=s, o sasa,; (4)
or = 8
k, aT _k To—T)lomar b<r<ec. (5)
09 log=g, &

The unknown temperature T, appears in the bound-
ary conditions (4) and (5). Its determination can be a
matter of very great interest, since it is evident that
it will exceed the temperature at any point of the
annulus. To determine T; we proceed as follows. We
assume that an expression for the temperature at any
point of the region shownin Fig. 2 has been constructed,
Ty will appear in this expression as a parameter. The
expression constructed permits us to calculate the
heat flux through the boundary r =a, but it is deter-
mined by the quantities Q;, Q3 ¢. This makes it pos-
sible to find T,.

We shall calculate the temperature field in regions
Iand II (see Fig. 2). Following the method of Grin-
berg [1], we note, that the eigenfunctions in ¢ for re-
gions I and II'do not coincide:
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Fig. 2. Region for which
the boundary problem is
solved.

Ay = Y, Uy

Therefore, to join the solutions we use the following
Ty
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the v to be arbitrary, and expand them according to
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a complete system of eigenfunctions (7) and (6), re-
spectively:
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Here the factors 4vyy,/a1(2ym + sin 2yy) have been
separated from the arbitrary coefficients G(Iz%, for
convenience.

Expressing the constants of integration of the Pois-
son equation for regions II and I in terms of the con-
stants of the expansions (9) and (10), we have
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The joining condition for Ty(r, ¢) and Typ(r, @)
make it possible to express S) and S, only in terms
of the set of coefficients G( ), wherem =1, 2, .. .
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and to make up an infinite system of linear algebraic
equations for G(é%:
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It may be seen from (18) and from (19) that with
increase of n, and therefore, of A, also, the moduli
of the quantities Py and Dy, decrease quite rapidly.
Therefore, in the system (17), we may restrict our-
selves to a small value of n.

By finding a finite number of coefficients G(rzx) , and
substituting them into formulas (11), (15) and (16), we
obtain the temperature distribution in regions T and II.

By specifying the heat flux at r = a, we can find the
temperature in the shaded region.

The method described may be applied conveniently
for calculation of the temperature in the conductors of
an electric motor rotor. We shall obtain the dependence
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of the temperature on the thickness of the thermal in-
sulation of the conductors.

To calculate the temperature field in the rotor we
ase the following data: ¢ = 12 cm; o, =0,0872; Q, =
=0,0221 W/em®; b = 24.5 cm; oy = 0.0548; Q; =
=0,0331 W/em®; ¢ = 29 cm; k = 0,221 Wem®; h =
= 0,007/ cm, where 0 is the thermal insulation
thickness.

The heat flux through the boundary r =a is equal to
2,52 W/cm, Then it follows from formulas (18) and
(19), that Py and Dyy, compose ~ 0.3% of P; and Dy
(m = 1.2). Therefore, restricting ourselves to this
kind of accuracy, we take n = 1.

We find the constant of the expansion for

0‘12) = P1/(1 — Du)v (20)

Pl = AIT() + BI: (21)

where A; By and D,; are determined from Egs. (18)
and (19) withn =1 and m = 1.

Making use of our knowledge of the total heat flux
through the boundary r =a, we obtain
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By examining different thicknesses of thermal insu-~
lation, we find the dependence of T; on &:

8, cm 0.1 0.2 0.3 0.4 0.6

T 0.297 0.210 0.174 0.149 0.123

Te, °C 116 132 141 156 165
NOTATION

T, is the temperature of shaded region; a,b, c)
are the dimensions shown in Fig. 1; oy, o, are the
angles shown in Fig. 2; Ty is the temperature in re-
gion I; Tpyis the temperature in region II; k; is the
thermal conductivity in regions I and II; k is the ther-
mal conductivity of insulation; Q; is the volume heat
release in region I; Qj is the volume heat release in
region II; § is the thickness of thermal insulation.
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